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Abstract

Some closed!form equations for the coupling problem of buckling and growth of circular delamination
are derived by recourse to the moving boundary variational principle[ The axisymmetric buckling of a
circular delamination subjected to an equal bi!axial compression is analysed by using high!order perturbation
expansion[ The axisymmetric buckled delamination has the following properties ] under a certain residual
pressure\ there exist two characteristic radii\ namely the critical radius Rc and growing radius R` ^ for a
certain interface toughness\ the blister has three con_guration of stationary\ stable growth and unstable
growth with increasing the loads[ Under a higher edge thrust\ the nonaxisymmetric secondary buckling will
occur on the base of axisymmetric buckling and then the toughness and the driving force of the interface
crack will be di}erent along the delamination front[ So the growth of circular delamination will not be self!
similar[ Without any assumption regarding the delamination front\ the con_gurations of the blister with
several nonaxisymmetric buckling modes n�1\ 2\ 5\ 7 are simulated[ The nonaxisymmetric growth process
for the nonaxisymmetric buckling mode n�1 is simulated also under a sequence of loads[ Þ 0887 Elsevier
Science Ltd[ All rights reserved[

0[ Introduction

The compressed _lm in the _lm:substrate system usually buckles away from the substrate
because of the existence of delamination[ The buckling induces stress concentration along the
delamination front and leads to further growth of the delamination[ This failure phenomenon
usually exists in laminate composite\ microelectronic element\ microelectronic packaging and
microelectroÐmechanical system "Yin\ 0874 ^ Argon et al[\ 0877\ 0878 ^ Hutchinson et al[\ 0881#[
Initially\ small ~aws tend to have smooth\ nearly circular\ boundaries and to exhibit axisymmetric
de~ections[ Under this condition\ the driving force "i[e[\ the energy release rate# along the delami!
nation front distributes uniformly\ so is the toughness of the interface crack\ which is related to
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the mixity of interface crack[ So the growth of the delamination is axisymmetric if the driving force
is greater than the toughness of the interface crack along the periphery of the blister[ As the load
increases\ or as the ~aw grows in size\ the _lm is observed to fold and the boundary to become
wavy "Hutchinson et al[\ 0881 ^ Jensen and Thouless\ 0882 ^ Ortiz and Gioia\ 0883 ^ Nilsson and
Giannakopoulos\ 0884 ^ Zhang and Yu\ 0885a\b#[ The reason of nonaxisymmetric growth of
buckling!driven delamination may be the instability of the boundary\ or the transition of the
buckling mode[ On the base of axisymmetric deformation\ Hutchinson et al[ "0881# and Jensen
and Thouless "0882# analysed the growth and the con_gurational stability of circular\ buckling
driven delamination by perturbing the front of the circular delamination\ and then the driving
force and toughness of the interface crack will be nonaxisymmetric naturally[ Nilsson and Gian!
nakopoulos "0884# used the _nite element method to simulate the nonaxisymmetric growth process
by perturbing the front of the circular delamination\ or by perturbing the bi!axial load[ In the
results above\ some nonaxisymmetric factors are introduced into the axisymmetric deformation in
advance to analyse the nonaxisymmetric growth of circular delamination[

The axisymmetric growth of a circular debond\ which is stable under certain conditions\ is
analysed in the paper by Zhang and Yu "0885a#[ The nonaxisymmetric secondary buckling which
is bifurcated from the axisymmetric state is calculated by Zhang and Yu "0885b# by using the
perturbation expansion method[ The driving force and the mode!adjusted toughness of the interface
crack vary along the periphery of the circular blister because of the nonaxisymmetric deformation\
which is the mechanism of nonaxisymmetric growth of circular delamination[

This paper is organized as follows[ First\ the equations and boundary conditions which describe
the buckling and growth of circular delamination in polar coordinates are deduced by recourse to
the moving boundary variational principle developed by Chien "0879#[ In particular\ the criterion
for incipient advance of interface crack is obtained simultaneously[ In Section 2[0\ a high!order
perturbation solution of axisymmetric buckling\ which shows good agreement with the FEM
results in the paper by Raju and Rao "0873#\ is derived[ The critical loads corresponding to the
nonaxisymmetric buckling mode are obtained in Section 2[1[ Then the perturbative solutions of
nonaxisymmetric deformation bifurcating from the axisymmetric buckling are obtained also[ The
axisymmetric growth of circular buckling!driven delamination is investigated in Section 3[ Some
new properties are revealed ] under a certain residual compression the circular delaminations with
the radii smaller than Rc will not buckle and the buckled delaminations with the radii smaller than
Rg will not grow[ With increasing of the pressure the buckled _lm changes from stationary into
stable growth and instable growth[ Finally\ Section 4 contains a simulation of nonaxisymmetric
growth of circular buckling!driven delamination[ The driving force and the toughness of interface
crack along the delamination front are calculated in Section 4[0[ According to the critical condition
G � G"c#\ and without any biased assumptions about the delamination front shapes\ the changing
crack front corresponding to di}erent nonaxisymmetric buckling modes "n � 1\ 2\ 5\ 7# is simulated
when some small nonaxisymmetric growth occurs[ Simultaneously\ the nonaxisymmetric growth
process corresponding to the buckling mode n � 1 is simulated under a sequence of loads[

1[ Statement of the problem

The circular delamination in the _lm:substrate is treated as a thin plate clamped to the substrate\
as shown in Fig[ 0[ Both materials are assumed to be linear!elastic and isotropic\ while the Young|s
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Fig[ 0[ The delamination and the interface crack[

moduli for the _lm and the substrate\ Ef and Es\ may be di}erent\ as may the Poisson|s ratios\ mf

and ms[ The substrate is modeled as being in_nitely thick[ The _lm thickness\ t\ is assumed to be
far too small compared to the extent of the delamination R and the radius of the curvature of the
crack front[ This ensures that plane!strain conditions hold locally along the crack front[ The stress
state in the _lm in the unbuckled state is uniform\ equi!biaxial compression p"N:m#[ The de~ection
of the _lm following delamination is assumed to be of moderate size\ which suggests framing the
analysis within the classical Von Karman theory of moderate de~ection of plate[ So in polar
coordinates system\ the membrane and bending strains are de_ned as
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where u\ v are in!plane displacements and w is normal de~ection[

The strain energy of the delaminated portion of the _lm is
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are the bending and membrane sti}ness of the _lm\ which are de_ned in terms of the Young|s
modulus Ef and Poisson|s ratio mf of the _lm[ The region V is the delaminated portion[ If the
delamination spreads out along the interface\ i[e[\ the integral region changes from V to V¦dV\
the variation of the strain energy is
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where G is the surface energy per unit area\ c the boundary of V with outward unit normal n\ dn
the micro!increment of c along the normal direction\ and ds the micro!increment along the tangent
direction[ In the region dV which is opened by dn\ the integrand can be denoted by the value of a
certain point on dn\ and can be denoted by the value on c when dn : 9[ The error which is high!
order of dn can be ignored in variation\ so
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where d"1w:1r# =c is the variation of 1w:1r on c when c is invariable[ We de_ne d"1w:1r# =c as the
total variation of 1w:1r on c "i[e[\ considering the variation of c#\ then
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where "1:1n#"1w:1r# =c is the value of "1:1n#"1w:1r# on c[ For the same reason\ we have
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The meaning of each term is the same as that interpreted above[
Let a be the angle between the axis of u � 9 and the normal direction n of a certain point on c\

the di}erential of the polar axes can be written as
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For any function A"r\ u# which is su.cingly continuous for most mathematical purposes\ the
partial derivative is

1A

1n
�

1a

1r
cos"a−u#¦

0

r

1A

1u
sin"a−u# "6#

Using the boundary conditions
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w=c � 9\
1w

1n bc � 9\ u=c � 9\ v=c � 9 "7#

and "5#\ "6#\ the variation of the strain energy can be deduced as

dP � g gV 6D9191w−C $0
11w

1r1
¦

0

r

1w

1r1"or¦mfou#¦
1w

1r

1

1r
"or¦mfou#¦

0

r1

11w

1u1
"ou¦mfor#

¦
0

r1

1w

1u
"ou¦mfor#¦"0−mf#

0

r

1w

1u

1oru

1r
¦"0−mf#

1w

1r

1oru

r 1u
¦1"0−mf#

0

r

11w

1r 1u
oru%7 dw dV

−C g gV $r
1

1r
"or¦mfou#¦"or¦mfou#−"ou¦mfor#¦"0−mf#

1oru

1r % du dV

−C g gV $
1

1u
"ou¦mfor#¦"0−mf# 0r

1oru

1r
¦1oru1% dv dV

−
C

1 Gc $0
1u

1r1
1

cos 1"a−u#¦
0−mf

1 0
1v

1r1
1

cos 1"a−u#¦
0¦mf

1

1u

1r

1v

1r
sin 1"a−u#% dn ds

−
D

1 Gc 0
11w

1r1 1
1

cos 1"a−u#dn ds¦Gc

G = dn ds "8#

where 91"=# is Laplace operator in polar coordinates[ Because dw\ du\ dv and dn are arbitrary\ the
Euler functions of this problem are
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and natural boundary condition
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We de_ne the energy release rate G as
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so "02# is the criterion for incipient advance of an interface crack[
Compared to the buckling theory of circular plate\ the problem described by "7#\ "09#Ð"02# has

an additional boundary condition "02# because of the unde_ned boundary[ To express simply\
eqns "09#Ð"03# can be formulated in terms of in!plane loads\ with the results
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where M and Nr\ Nu\ Nru are the bending moment and resultant stressÐforce per unit length caused
by buckling\ which can be written as

M � D"11w:1r1#\ Nr � C"or¦mfou#−p\ Nu � C"ou¦mfor#−p\ Nru � C"0−mf#oru

2[ Buckling and post!buckling calculation

We analyse the buckling and post!buckling of circular delamination _rstly\ not considering the
growth\ i[e[\ the boundary of the delamination remains circular[ The analyses is similar to that
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given by Keller et al[ "0851#\ Thompson and Hunt "0862#\ and Cheo and Reiss "0862\ 0863# about
the buckling and post!buckling of circular plate[ The _nite element method\ _nite di}erence method
and perturbation method are used in these papers[ But because of the complexity of the large
de~ection of the plate\ these results for post!buckling of circular plate are incomplete\ especially
those of nonaxisymmetric secondary buckling\ which bifurcates from the axisymmetric buckling\
are much di}erent[ Further investigation of the axisymmetric and nonaxisymmetric buckling of
circular delamination is developed in this paper[

2[0[ Axisymmetric bucklin` of circular delamination

Under the axisymmetric condition\ because every variable is irrelevant to u and v � 9\ the
equations describing the buckling of circular delamination are simpli_ed as
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We de_ne dimensionless variables by
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and using the dimensionless center de~ection s of the circular delamination as perturbative
parameter\ the perturbative expansions are given as

w
¹

� w0s¦w2s
2¦w4s

4¦w6s
6 [ [ [ "08#

u
¹
� u1s

1¦u3s
3¦u5s

5¦= = = "19#

P
Þ

� pc¦e
0

1
p1s

1¦e
0

3
p3s

3¦e
0

5
p5s

5 [ [ [ "10#

Substituting "07#Ð"10# into "04#Ð"06#\ leads to the analytic solutions of w0\ u1 as follows
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where t � zpc � 2[7206\ A0 � −t:"0−J9"t##\ J9\ J0 are Bessel functions of zero and _rst!order\
and t � 2[7206 is the smallest root of J0"x# � 9[ The numerical solutions of w2\ w4\ w6\ u3 and u5

can be obtained by using the shooting method[ The eigenvalue pc\ p1\ p3 and p5 are obtained
simultaneously\ with the results
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Fig[ 1[ Buckling road comparing with FEM results reported by Raju and Rao "0873#[

pc � 03[5721\ p1 � 0[309\ p3 � 0[687×09−2\ p5 � 2[997×09−4

The results are calculated with mf � 9[2[ The comparison between the perturbation solutions
and the FEM results in the paper by Raju and Rao "0873# is shown in Fig[ 1[ Since only six

separated solutions in the limits of s ¾ z01"0−m1
f # are obtained by Raju and Rao "0873#\ we

calculate the extended FEM results for s × z01"0−m1
f # from these six solutions[ It can be seen

from the _gure that the two!order solution and the six!order solution coincide with the FEM
results very well when p:pc is small\ while when p:pc is larger than _ve\ the two!order solution has
a large deviation from the six!order solution and the FEM results[ A further illustration on this
point is given in Fig[ 2[ Figure 2a is the axisymmetric buckling morphologies calculated by the
two!order solution[ The deformation is concave in the center of the delamination when p:pc × 4[
This is not corresponding to the physical phenomenon[ Figure 2b is the morphologies calculated
by the six!order solution and it can be seen that the shape of the blisters are reasonable even when
p:pc is as large as 09[

2[1[ Nonaxisymmetric bucklin` of circular delamination

As described by Cheo and Reiss "0863#\ a strip of large circumferential compressive stress
develops adjacent to the edge of the plate "i[e[\ the delamination in this problem# with p increasing[
The {{width|| of the strip decreases while the compressive stress intensity increases as p is increased[
Thus\ for su.ciently large p the strip may buckle unsymmetrically like a ring\ in other words\ the
plate may buckle away from the axisymmetric buckled state by wrinkling near the edge into an
unsymmetric state[ To determine the wrinkling loads\ we express nonaxisymmetric solutions w
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¹
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Fig[ 2[ The axisymmetric buckling morphologies under a series of loads[
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where w
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and P
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are dimensionless variables de_ned in "07# and v
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solutions obtained in Section 2[0\ and w�\ u� and v� are the nonaxisymmetric deformation bifur!
cated from the axisymmetric buckling[

The dimensionless in!plane loads can be written as
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is the compressive load\ N9
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u denote the change from the plate state and N�r\ N�u are the
change from the axisymmetric buckling state[
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We seek the solutions of w�\ u�\ v� and P
Þ

in the form

w� � w0o¦w1o
1¦w2o

2¦= = = "22#

u� � u0o¦u1o
1¦u2o

2¦= = = "23#

v� � v0o¦v1o
1¦v2o

2¦= = = "24#

P
Þ

� p9¦p0o¦p1o
1¦= = = "25#

and expand the solutions w9\ u9 of axisymmetric buckling in a power series in o[ The parameter o

is de_ned by

o1 � g gV
ð"w−w9#

1¦"u−u9#
1¦v1Ł dV � g gV

ð"w�#1¦"u�#1¦"v�#1Łx dx du "26#

Other de_nitions of o can be used also[
In order to determine the coe.cients wi\ ui\ vi "i � 0\ 1\ 2#\ we formulate these variables as follows
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Table 0

The eigenvalue for di}erent nonaxisymmetric buckling mode

n 0 1 2 3 4 5 6 7

p9 025[55 096[74 002[9 018[16 049[20 063[66 190[33 120[93

p9:pc 8[20 6[24 6[69 7[70 09[13 00[89 02[61 04[63

p1 * 9[978 0[657 4[255 5[620 21[87 094[46 020[46

� pc � 03[5721 is the critical load for axisymmetric buckling[

w0"x\ u# � w00"x#"sin nu¦cos nu#

u0"x\ u# � u00"x#"sin nu¦cos nu#

v0"x\ u# � v00"x#"cos nu−sin nu# "27#

w1"x\ u# � w19"x#¦w11 sin 1nu

u1"x\ u# � u19"x#¦u11 sin 1nu

v1"x\ u# � v19"x#¦v11 sin 1nu "28#

w2"x\ u# � w20"x#"sin nu¦cos nu¦w22"sin2nu¦cos2nu#

u2"x\ u# � u20"x#"sin nu¦cos nu#¦u22"sin2 nu¦cos2 nu#

v2"x\ u# � v20"x#"cos nu#−sin nu#¦v22"cos2 nu−sin2 nu# "39#

Substituting "22#Ð"39# into "18#Ð"21#\ and equating coe.cients of the same powers of o\ we get
a series of linear ordinary di}erential equations\ which are in terms of x\ and the relevant boundary
conditions[ The numerical results of these equations which corresponds to n can be calculated by
using the shooting method[ The eigenvalues p9\ p1 are shown in Table 0[ In all cases that we studied\
p0 0 9[ So the nonaxisymmetric deformation of circular delamination under a certain compressive
load P

Þ
can be determined from "22#Ð"39#[ Figure 3 show the nonaxisymmetric out!of!plane

deformation of the circular delamination in the nonaxisymmetric buckling mode n � 1\ 2\ 5\ 7[
In order to certify our calculations of the non!axisymmetrical eigenvalue problems\ we recal!

culated the non!axisymmetrical bifurcation by using the second order axisymmetrical solutions[ A
result "n � 6\ p9 ¼ 009[6# which is similar with those by Cheo and Reiss "0863# was obtained[ This
result is much di}erent from that in Table 0 because of the deference of the boundary condition[
In our present paper the displacements are zero along the periphery\ while in the paper of Cheo
and Reiss the radial compressed load is a constant along the boundary[

3[ Axisymmetric growth analysis

As mentioned by Argon et al[ "0877\ 0878# and Hutchinson et al[ "0881#\ the initial ~aws are
small and tend to have smooth\ nearly circular boundaries[ So we analyse the axisymmetric growth
of circular delamination _rst\ and then simulate the nonaxisymmetric periphery of the blister[



X[ Zhan`\ S[ Yu : International Journal of Solids and Structures 25 "0888# 0688Ð0710 0700

ss14024a

Fig[ 3[ The out!of!plane deformation of the circular delamination in di}erent nonaxisymmetric buckling mode[
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Fig[ 3*Continued[
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Fig[ 4[ Dimensionless energy release rate for axisymmetric blister[

3[0[ Drivin` force and mode!mixity of interface crack

In order to analyse the growth of the delamination\ we must calculate the driving and resistant
force of the crack _rst[ The driving force "i[e[\ the energy release rate# of the crack along the front
of the delamination can be evaluated from "03# or "03?# after the buckling deformation of the
circular delamination is obtained[ Under the condition of axisymmetric buckling\ the crack mode
is a combination of mode I and II\ and "03?# can be rewritten as

G �
0

1D
M1¦

0

1C
N1

r "30#

The curve of G as a function of p:pc is plotted in Fig[ 4[ The plot shows that the driving force G
along the blister periphery increases monotonically with increasing p:pc[ The toughness of the
interface crack can be written as "Hutchinson\ et al[\ 0881#

G � G"c# � G0cf"c#\ f"c# � ð0¦"l−0# sin1 cŁ−0 "31#

where G0c is the pure mode I interface toughness and the parameter l"9 ¾ l ¾ 0# is chosen to _t
experimental results for a given bimaterial interface[ For l � 0 it coincides with the classical mode!
independent criterion G � G0c\ while for l ³ 0\ it is regarded as a phenomenological interface
fracture criterion[ In Jensen and Thouless "0882#\ l � 9[04 gave good agreement with experimental
results for a mica:aluminum system[ c is the mixity of the interface crack\ for the _lm:substrate
systems\ it can be written as

c �
z01M cos v¦tNr sin v

−z01M sin v¦tNr cos v
"32#
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Fig[ 5[ Mode mixity parameter c vs p:pc for three levels of elastic mismatch between _lm and substrate for axisymmetric

blister[

where v"a\ b# is a function tabulated in Suo and Hutchinson "0889#\ a and b\ the two Dunders|
elastic mismatch parameters\ are de_ned as

a �
E
Þ

f−E
Þ

s

E
Þ

f¦E
Þ

s

"33#

b �
0

1 $
E
Þ

f"0−1ms#

"0−ms#"E
Þ

f¦E
Þ

s#
−

E
Þ

s"0−1mf#

"0−mf#"E
Þ

f¦E
Þ

s#% "34#

Generally\ a is more important in the two parameters for interfacial fracture problems[ Moreover\
a non!zero b!value complicates the application of interfacial fracture mechanics[ In this paper\
attention will be restricted to the mismatches with b � 9\ either exactly or by approximation[
Nothing of essence in the blister problem is lost by taking b � 9[ The plots of mode mixedness c

as a function of p:pc for three levels of elastic mismatch "a � −9[7\ 9\ 9[7# between _lm and
substrate are shown in Fig[ 5\ and the toughness functions f"c# are plotted in Fig[ 6 with a � 9
and mf � 9[2[ The toughness function f"c# increases with increasing p:pc "Fig[ 6# because of the
increase of =c= " for p:pc emerging from 0\ c start at v−p:1 and reach peaks for p:pc ¼ 7#[ So it is
possible that the axisymmetric growth of buckling driven delamination stops[

For discussing and presenting results simply\ it is also useful to de_ne a mode!adjusted crack
driving force "Hutchinson et al[\ 0881#

F � G:f"c# "35#

Thus\ the condition for incipient fracture becomes
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Fig[ 6[ Family of interface toughness functions f"c# vs p:pc for axisymmetric blister with a � 9 and mf � 9[2[

F � G0c "36#

3[1[ Spreadin` of circular blister

To analyse the axisymmetric growth of the blister\ a load parameter p
½

is de_ned as

p
½
�

p

Eft
"37#

The relationship between the dimensionless load P
Þ

and the load parameter p
½

is

P
Þ

� 01"0−m1
f # 0

R

t 1
1

= p
½

"38#

Equation "38# shows that under a certain load p "i[e[ p
½
#\ the dimensionless load P

Þ
increases with

the increase of R:t[ That is\ P
Þ

increases with the growth of the delamination[
Under a certain residual compressive load p "i[e[\ p

½
#\ there exists a critical radius Rc

Rc �X
03[5721

01"0−m1
f #p

½ = t "49#

where t is the thickness of the _lm[ Rc is de_ned by "49# such that the ~at!state of the _lm will
remain when the extent of the delamination R is smaller than Rc\ and the _lm will buckle when
R − Rc[

Referring to the dimension of the driving force G\ G0c can be represented by
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Fig[ 7[ Normalized mode!adjusted crack driving force for axisymmetric blister under three level of pressure with a � 9

and mf � 9[2[

G0c � L =
D

13
=

t1

R3
� L =

Eft

177"0−m1
f #

= 0
t

R1
3

"40#

where L is a constant[ Equation "40# shows that G0c is directly proportional to t under a certain
extent of circular delamination R:t[ If we choose mica for the _lm and aluminum for the substrate\
some thickness!dependent G0c are given by Hutchinson et al[ "0881# as follows ] G0e ¼ 0[6 Jm−1

for t ¼ 029 mm ^ G0c ¼ 9[7 Jm−1 for t 3 59 mm ^ and G0c ¼ 9[3 Jm−1 for t ¹ 29 mm[ So
G0c:t ¼ 02\2222 Jm−2 for this interface[

The conditions of stationary\ stable growth and instable growth of the delamination with a
certain interface toughness of G0c:t ¼ 02\222 Jm−2 for three levels of load are shown in Fig[ 7[ The
extent of the delamination is R:t � 59[ The circular delamination buckles for p � 4×09−3 Eft
"i[e[\ P

Þ
� 19[545 when R:t � 59#\ but it would not extend out because F:G0c ³ 0[9[ The buckled

delamination will spread under a larger load of p � 7×09−3 Eft "P
Þ

� 22[94 when R:t � 59#\ and
the growth will stop at point C because 1F:1"R:t# ³ 9 and F:G0c � 0[9[ With the increasement of
p\ such as p � 1×092Eft "P

Þ
� 71[513 when R:t � 59#\ the axisymmetric blister will spread unstably[

Under a certain residual compressive load p\ the curve of mode!adjusted crack driving force F
at the edge of axisymmetric circular blister as a function of R:t "i[e[\ P

Þ
# is plotted in Fig[ 8[ There

exist two characteristic radii Rc and R` of the delamination\ as shown in Fig[ 8[ The delaminated
_lm will remain ~at!state for R ³ Rc and will buckle for R − Rc[ The critical radius Rc is deduced
from "49#[ The growing radius R` varies with the di}erence of the interface toughness\ so is the
growth stability[ The blister would spread without limit once the condition F � G0cA is _rst reached
at its edge[ In other words\ a blister would either be sub!critical with R ³ RA or the _lm would
completely delaminate[ So in this case\ R` � RA[ With the increasing of the interface toughness\
such as G0c � G0cB\ the blister would propagate when R � RB "so R` � RB#\ but would stop at
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Fig[ 8[ Mode!adjusted crack driving force for axisymmetric blister under a certain pressure with a � 9 and mf � 9[2[

point C because G0c � G0cB and 1F:1"R:t# ³ 9[ When G0c � G0cD\ the blister would not spread in
a large extent of delamination till the point E is reached[ So R` � RE in this condition[

4[ Nonaxisymmetric growth simulation

4[0[ The drivin` force and the tou`hness of the interface crack

If nonaxisymmetric buckling occurs\ the interface crack mode changes to a combination of
mode I\ mode II and mode III[ The energy release rate represented by "03# or "03?# shows this
characteristic[ The toughness of interface crack in the mixed mode of mode I and II has been
analysed in detail and the acceptable results have been obtained[ Concerning the combination of
mode I and III\ or mode II and III or even mode I\ II and III\ there are no perfect results up to
now[ If the nonaxisymmetric deformation is small and the growth of the crack is con_ned to the
interface\ we use the results of mode I and II mixed interface crack following the way suggested
by Hutchinson et al[ "0881#\ as expressed in "31#[ The mode mixedness c is calculated from "32#[
According to "35#\ we plot the curves of F:G0c along the periphery of the blister when the pressure
are large enough to cause nonaxisymmetric growth[ Figure 09 illustrate the results for di}erent
nonaxisymmetric buckling mode n � 1\ 2\ 5\ 7\ where G0c:t ¼ 02\222 Jm−2 is used[

4[1[ Nonaxisymmetric `rowth simulation

We assume that the periphery of the delamination changes to be r"u# after some small non!
axisymmetric growths occur\ so the slope of the normal direction n for a certain point on the
boundary is
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Fig[ 09[ Normalized mode!adjusted crack driving force along the boundary of blister in di}erent nonaxisymmetric

buckling mode[

tan a � −
"dr:du# cos u−r sin u

"dr:du# sin u¦r cos u
"41#

it can be simpli_ed as

dr

du
� −tan"a−u# = r "42#

Once the angle a of each point on the boundary c of the region of the delamination is calculated\
the boundary con_guration r"u# can be determined easily by integrating "42#[ So we can simulate
the nonaxisymmetric growth of the delamination by three steps ]

0[ To calculate the buckling deformation\ as analysed in Section 2[
1[ To determine the direction angle a of the normal line of the boundary c by means of the growth

criterion of the interface crack\ as illustrated in Section 4[0[
2[ To simulate the boundary of the buckled delamination by integrating "42#[
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Fig[ 00[ The boundary con_guration of the blister in a series of nonaxisymmetric buckling modes[

The con_gurations of the blisters corresponding to di}erent nonaxisymmetric buckling mode n
"�1\ 2\ 5\ 7# are shown in Fig[ 00[ In addition\ it can be seen from Table 0 that the smallest second
critical load appears in the mode of n � 1[ This means that the nonaxisymmetric buckling mode
of n � 1 will take place _rstly and the other nonaxisymmetric buckling modes will not occur if the
circular delamination buckles and grows in the mode of n � 1[ The plots in Fig[ 01 interpret the
process of nonaxisymmetric growth of the blister in the mode of n � 1 under a sequence of loads[

5[ Conclusion

The axisymmetric and nonaxisymmetric buckling and growth of a circular delamination loaded
in an equal bi!axial compression have been analysed in this paper[ Some closed!form equations
for the buckling and growth of the circular delamination are deduced by recourse to the moving
boundary variational principle[ The energy release rate of a mode I\ II and III mixed interface
crack are obtained simultaneously\ and a relationship between the energy release rate and the
boundary con_guration is revealed\ too[
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Fig[ 01[ The growth process of the blister in the nonaxisymmetric buckling mode n � 1 under a series of loads[

Two major features of axisymmetric growth of circular buckling!driven delamination have been
explored ]

0[ A high!order perturbation solution of axisymmetric buckling\ which shows good agreement
with the FEM results\ is obtained and applied to analyse the axisymmetric growth of buckling
driven delamination[ Some properties which di}er from the results deduced from low!order
expansions are revealed[ The analyses in this paper indicate that there exist three conditions of
stationary\ stable growth and instable growth[

1[ Two characteristic radii Rc and R` exist under a certain residual pressure[ The circular delami!
nated _lm will not buckle if its radius is less than Rc\ and the buckled _lm will not spread out
if R ³ R`[

Two major results about the nonaxisymmetric growth are obtained in this paper ]
2[ The nonaxisymmetric buckling bifurcated from the axisymmetric buckling\ which is considered

as the mechanism of the nonaxisymmetric growth of buckling driven delamination\ are cal!
culated by using perturbation expansions[

3[ Without any biased assumptions regarding the delamination front shapes\ the nonaxisymmetric
growths for di}erent nonaxisymmetric buckling mode n "�1\ 2\ 5\ 7# are simulated[ Under a
sequence of loads\ the growth process for nonaxisymmetric buckling mode n � 1 is obtained\
too[

The approach developed in this paper can be used in the analysis of growth problems involving
more complex shapes of delamination[

Acknowledgement

This work was supported by the National Natural Science Foundation of China[

References

Argon\ A[S[\ Gupta\ V[\ Landis\ H[S[\ Cornie\ J[A[\ 0877[ Intrinsic toughness of interfaces[ Mater[ Sci[ Engng A096 "0#\

30Ð36[



X[ Zhan`\ S[ Yu : International Journal of Solids and Structures 25 "0888# 0688Ð0710 0710

Argon\ A[S[\ Gupta\ V[\ Landis\ H[S[\ Cornie\ J[A[\ 0878[ Intrinsic toughness of interfaces between SiC coatings and

substrates of Si or C _bre[ J[ Mater[ Sci[ 13 "6#\ 0196Ð0107[

Cheo\ L[S[\ Reiss\ E[L[\ 0862[ Unsymmetric wrinkling of circular plates[ Quar[ Appl[ Math[ 20\ 64Ð80[

Cheo\ L[S[\ Reiss\ E[L[\ 0863[ Secondary buckling of circular plates[ SIAM J[ Appl[ Math[ 15 "2#\ 389Ð384[

Chein\ W[Z[\ 0879[ Variational Method and Finite Element[ Science Press\ Beijing "in Chinese#[

Evans\ A[G[\ Hutchinson\ J[W[\ 0873[ On the mechanics of delamination and spalling in compressed _lms[ Int[ J[ Solids

Struct[ 19 "3#\ 344Ð355[

Hutchinson\ J[W[\ Suo\ Z[\ 0881[ Mixed mode cracking in layered materials[ Adv[ Appl[ Mech[ 18\ 53Ð076[

Hutchinson\ J[W[\ Thouless\ M[D[\ Liniger\ E[G[\ 0881[ Growth con_gurational stability of circular buckling!driven

_lm delamination[ Acta[ Metall[ Mater[ 39 "1#\ 184Ð297[

Jensen\ H[M[\ Thouless\ M[D[\ 0882[ E}ects of residual stress in blister test[ Int[ J[ Solids Struct[ 29 "5#\ 668Ð684[

Keller\ H[B[\ Keller\ J[B[\ Reiss\ E[L[\ 0851[ Buckled state of circular plates[ Quar[ Appl[ Math[ 19\ 438Ð459[

Nilsson\ K[!F[\ Giannakopoulos\ A[E[\ 0884[ A _nite element analysis of con_gurational stability and _nite growth of

buckling driven delamination[ J[ Mech[ Phys[ Solids 32 "01#\ 0872Ð1910[

Ortiz\ M[\ Gioia\ G[\ 0883[ The morphology and folding patterns of buckling!driven thin!_lm blisters[ J[ Mech[ Phys[

Solids 31 "2#\ 420Ð448[

Raju\ K[K[\ Rao\ G[V[\ 0873[ Thermal post!buckling of circular plates[ Comput[ Struct[ 07 "5#\ 0068Ð0071[

Suo\ Z[\ Hutchinson\ J[W[\ 0889[ Interface crack between two elastic layer[ Int[ J[ Fract[ 32\ 0Ð07[

Thompson\ J[M[T[\ Hunt\ G[W[\ 0862[ A General Theory of Elastic Stability[ John Wiley and Sons\ London[

Yin\ W[L[\ 0874[ Axisymmetric buckling and growth of a circular delamination in a compressed laminate[ Int[ J[ Solids

Struct[ 10 "4#\ 492Ð403[

Zhang\ X[Y[\ Yu\ S[W[\ 0885a[ The analysis of axisymmetric buckling and growth of circular!shaped delamination[

Acta Mech[ Solid Sinica 8 "2#\ 190Ð198[

Zhang\ X[Y[\ Yu\ S[W[\ 0885b[ Buckling and growth of circular delamination[ Proceedings of International Conference

on Advanced Materials\ 0885[ Beijing[ pp[ 0969Ð0965[


